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Abstract
Modified Rayleigh conjecture (MRC) in scattering theory is proposed and
justified. MRC allows one to develop numerical algorithms for solving
direct scattering problems related to acoustic wave scattering by soft and hard
obstacles of arbitrary shapes. It gives an error estimate for solving the direct
scattering problem. It suggests a numerical method for finding the shape of a
star-shaped obstacle from the scattering data.
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Mathematics Subject Classification: 35R30

1. Introduction

Consider a bounded domain D ⊂ R
n, n = 3, with a boundary S. The exterior domain is

D′ = R
3\D. Assume that S is smooth and star-shaped, that is, its equation can be written as

r = f (α) (1.1)

where α ∈ S2 is a unit vector and S2 denotes the unit sphere in R3. Smoothness of S is used
in (4.6). For solving the direct scattering problem by the method described in section 2, the
boundary S can be Lipschitz. The acoustic wave scattering problem by a soft obstacle D
consists of finding the (unique) solution to the problem (1.2)–(1.3):

(∇2 + k2)u = 0 in D′ u = 0 on S (1.2)

u = u0 +A(α′, α)
eikr

r
+ o

(
1

r

)
r := |x| → ∞ α′ := x

r
. (1.3)

Here u0 := eikα·x is the incident field, A(α′, α) is called the scattering amplitude, its
k-dependence is not shown, k > 0 is the wavenumber. Let us denote

A�(α) :=
∫
S2
A(α′, α)Y�(α′) dα′ (1.4)
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where Y�(α) are the orthonormal spherical harmonics, Y� = Y�m,−� � m � �. Let h�(r)
be the spherical Hankel functions, normalized so that h�(r) ∼ eikr

r
as r → +∞. Let the ball

BR := {x : |x| � R} contain D.
In the region r > R the solution to (1.2)–(1.3) is

u(x, α) = eikα·x +
∞∑
�=0

A�(α)ψ� ψ� := Y�(α
′)h�(kr) r > R α′ = x

r
(1.5)

this summation includes summation with respect to m, −� � m � �, and A�(α) are defined
in (1.4).

Rayleigh conjecture (RC): the series (1.5) converges up to the boundary S (originally RC
dealt with periodic structures, gratings). This conjecture is wrong [1, 3, 4]. For example, if
n = 2 and D is an ellipse, then the series analogous to (1.5) converges in the region r > a,
where 2a is the distance between the foci of the ellipse [1]. In the engineering literature there
are numerical algorithms, based on the RC. Our aim is to give a formulation of a modified
Rayleigh conjecture (MRC) which is correct and can be used in the numerical solution of
the direct and inverse scattering problems. We discuss the Dirichlet condition but similar
argument is applicable to the Neumann boundary condition, corresponding to acoustically
hard obstacles.

Fix ε > 0, an arbitrary small number.

Lemma 1.1. There exist L = L(ε) and c� = c�(ε) such that∥∥∥∥∥u0 +
L(ε)∑
�=0

c�(ε)ψl

∥∥∥∥∥
L2(S)

� ε. (1.6)

If (1.6) and the boundary condition (1.2) hold, then

‖vε − v‖L2(S) � ε vε :=
L(ε)∑
�=0

c�(ε)ψl. (1.7)

Lemma 1.2. If (1.7) holds then

‖vε − v‖ = O(ε) ε → 0 (1.8)

where ‖ · ‖ := ‖ · ‖Hm
loc(D

′) + ‖ · ‖L2(D′;(1+|x|)−γ ), γ > 1,m > 0 is an arbitrary integer and Hm is
the Sobolev space.

In particular, (1.8) implies

‖vε − v‖L2(SR)
= O(ε) ε → 0. (1.9)

Lemma 1.3. One has

c�(ε) → A�(α)∀� ε → 0. (1.10)

The modified Rayleigh conjecture (MRC) is formulated as a theorem which follows from
the above three lemmas:

Theorem 1 (MRC). For an arbitrary small ε > 0 there exist L(ε) and c�(ε), 0 � � � L(ε),
such that (1.6), (1.8) and (1.10) hold.

The difference between RC and MRC is: (1.7) does not hold if one replaces vε by∑L
�=0 A�(α)ψ�, and let L → ∞ (instead of letting ε → 0).
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For the Neumann boundary condition one minimizes

∥∥∥∥ ∂
[
u0+

∑L
�=0 c�ψ�

]
∂N

∥∥∥∥
L2(S)

with respect

to c�. Analogues of lemmas 1.1–1.3 are valid and their proofs are essentially the same.
In section 2 we discuss the usage of MRC in solving the direct scattering problem, in

section 3 its usage in solving the inverse scattering problem, and in section 4 proofs are given.

2. Direct scattering problem and MRC

The direct problem consists of finding the scattered field v, given S and u0. To solve this using
the MRC, fix a small ε > 0 and find L(ε) and c�(ε) such that (1.6) holds. This is possible by
lemma 1.1 and can be done numerically by minimizing ‖u0 +

∑L
0 c�ψ�‖L2(S) := φ(c1, . . . , cL).

If the minimum of φ is larger than ε, then increase L and repeat the minimization. Lemma 1.1
guarantees the existence of such L and c� that the minimum is less than ε. Choose the smallest
L for which this happens and define vε := ∑L

�=0 c�ψ�(x). Then vε is the approximate solution
to the direct scattering problem with the accuracyO(ε) in the norm ‖ · ‖ by lemma 1.2.

In [6] representations of v and vε are proposed, which greatly simplify the minimization
of φ. Namely, let �� solve the problem

(∇2 + k2)�� = 0 in D′ �� = f� on S (2.1)

and �� satisfies the radiation condition. Here {f�}��0 is an arbitrary orthonormal basis of
L2(S). Let us denote

v(x) :=
∞∑
�=0

c���(x) u(x) := u0 + v(x) c� := (−u0, f�)L2(S). (2.2)

The series (2.2) on S is a Fourier series which converges in L2(S). It converges pointwise
inD′ by the argument given in the proof of lemma 1.2. A possible choice of f� for star-shaped
S is f� = Y�/

√
w where w := dS/dα. Here dS and dα are respectively the elements of the

surface areas of the surface S and of the unit sphere S2.

3. Inverse scattering problem and MRC

Inverse obstacle scattering problems (IOSPa and IOSPb) consist of finding S and the boundary
condition on S from the knowledge of

(IOSPa): the scattering data A(α′, α, k0) for all α′, α ∈ S2, k = k0 > 0 being fixed, or
(IOSPb): A(α′, α0, k), known for all α′ ∈ S2 and all k > 0, α = α0 ∈ S2 being fixed.

The uniqueness of the solution to IOSPa is proved by Ramm (1985) for the Dirichlet,
Neumann and Robin boundary conditions, and of IOSPb by Schiffer (1964), who assumed
a priori the Dirichlet boundary condition. The proofs are given in [4]. Ramm has also
proved that not only S but the boundary condition as well is uniquely defined by the above
data in both cases, and gave stability estimates for the solution to IOSP [9]. Later he gave a
different method of proving the uniqueness theorems for these problems which covered the
rough boundaries (Lipschitz) and much rougher boundaries: those with finite perimeter [8],
see also [10]. In [11] the uniqueness theorem for the solution of the inverse scattering problem
is proved for a wide class of transmission problems. It is proved that not only the discontinuity
surfaces of the refraction coefficient, but also the coefficient itself inside the body and the
boundary conditions across these surfaces are uniquely determined by the fixed-frequency
scattering data. For any strictly convex, smooth, reflecting obstacle D, analytical formulae for
finding S from the high-frequency asymptotics of the scattering amplitude are proposed by
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Ramm, who gave error estimates of his inversion formula also [4]. The uniqueness theorems
in the above references hold if the scattering data are given not for all α′, α ∈ S2, but only
for α′ and α in arbitrary small solid angles, i.e. in arbitrary small open subsets of S2. The
inverse scattering problem with the data α′ ∈ S2, k = k0 and α = α0 being fixed, is open. If
a priori one knows that D is sufficiently small, so that k0 > 0 is not a Dirichlet eigenvalue
of the Laplacian in D, then the uniqueness of the solution with the above non-overdetermined
data holds (by the usual argument [4]). There are many parameter-fitting schemes for solving
IOSP, [13], see also [5].

Let us describe a new such scheme, based on MRC, its idea is similar to that in [7].
Suppose that the scattered field v is observed on a sphere SR. Calculate c� := (v, Y�)L2(S2)/

h�(kR). If v is known exactly, then c� = A�(α). If vδ are noisy data, ‖v− vδ‖L2(SR)
� δ, then

c� = c�δ . Choose some L, say L = 5, and find r = r(α′) as a positive root of the equation
u0 + vL := eikα·α′r +

∑L
�=0 c�δψ�(kr, α

′) := p(r, α′, α, k) = 0. Here α′ and k > 0 are fixed,
and we are looking for the root r = r(α′) which is positive and stable under changes of k
and α. In practice, the equation p(r, α′, α, k) = 0 may have no such root, the root may have
small imaginary part. If for the chosen L such a root (that is, a root which is positive, or
has a small imaginary part, and stable with respect to changes of k and α) is not found, then
increase L, and/or decrease L, and repeat the search of the root. Stop the search at a smallest
L for which such a root is found. The MRC justifies this method: for a suitable L the function
p(r, α′, α, k) approximately equals zero on S, that is, for r = r(α′), and this r(α′) does not
depend on k and α. Moreover, by the uniqueness theorem for IOSPa and IOSPb there is only
one such r = r(α′). Numerically one expects to find a root of the equation p(r, α′, k) = 0
which is close to positive semiaxis r > 0 and stable with respect to changes of k and α.

If one uses the above scheme for solving the inverse scattering problem for an acoustically
hard body (the Neumann boundary condition on S), then one gets not a transcendental equation
p(r, α′, α, k) = 0 for finding the equation of S, r = r(α′), but a differential equation for
r = r(α′), which comes from the equation ∂p(r,α′,α,k)

∂N
= 0 at r = r(α′). One has to write the

normal derivative on S in spherical coordinates and then substitute r = r(α′) into the result
to get a differential equation for the unknown function r = r(α′). For example, if n = 2 (the
two-dimensional case), then the role of α′ is played by the polar angle ϕ′ and the equation for

r = r(ϕ′) takes the form dr
dϕ′ = (

r2 dp
dr

/ dp
dϕ′

)∣∣∣
r=r(ϕ′)

.

4. Proofs

Proof of lemma 1.1. This lemma follows from the results in [4] (p 162, lemma 1). �

Proof of lemma 1.2. By Green’s formula one has

vε(x) = −
∫
S

vε(s)GN(x, s) ds ‖vε(s) + u0‖L2(S) < ε (4.1)

where G is the Dirichlet–Green’s function of the Laplacian in D′:

(∇2 + k2)G = −δ(x − y) in D′ G = 0 on S (4.2)

lim
r→∞

∫
|x|=r

∣∣∣∣ ∂G∂|x| − ikG

∣∣∣∣
2

ds = 0. (4.3)

From (4.1) one gets (1.3) withHm
loc(D

′)-norm immediately by the Cauchy inequality, and with
the weighted norm from the estimate

|GN(x, s)| � c

1 + |x| |x| � R (4.4)
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and from local elliptic estimates for wε := vε − v, which imply that

‖wε‖L2(BR\D) � cε. (4.5)

Let us recall the elliptic estimate we used. Let D′
R := BR\D, SR be the boundary of BR, and

choose R such that k2 is not a Dirichlet eigenvalue of −� inD′
R . The elliptic estimate we have

used is ([2], p 189)

‖wε‖Hm(D′
R)

� c
[∥∥(� + k2)wε

∥∥
Hm−2(D′

R)
+ ‖wε‖Hm−0.5(SR)

+ ‖wε‖Hm−0.5(S)

]
. (4.6)

Taking m = 0.5 in (4.6) and using the equation (� + k2)wε = 0 in D′ and the estimates
‖wε‖Hm(SR)

= O(ε), proved above, ‖wε‖Hm(S) = O(ε), we get (1.8). Hence, lemma 1.2 is
proved. �

Proof of lemma 1.3. Lemma 1.2 yields convergence of vε to v in the norm ‖ · ‖. In particular,
‖vε − v‖L2(SR)

→ 0 as ε → 0. On SR one has v = ∑∞
�=0 A�(α)ψ� and vε = ∑L(ε)

�=0 c�ψ�.
Multiplying vε(R, α′)− v(R, α′) by Y�(α′), integrating over S2 and then assuming ε → 0, we
get (1.10). �
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